SciPy: Elevate Your Data Science with Scientific Python.

What is SciPy ?


SciPy or a Scientific Python is a Python library that offers a variety of scientific computing tools for data analysis, manipulation, and visualization. It includes modules for optimization, integration, linear algebra, signal processing, and more, making it a comprehensive resource for data scientists. One of the main advantages of using SciPy for data science is its ease of use and flexibility.

SciPy is open source and due to this it has a large community of developers which create enormous number of modules for scientific applications.

SciPy DS cheat sheet.
SciPy for Data Science meme.

Python Knowledge Base: Make coding great again.
- Updated: 2025-01-21 by Andrey BRATUS, Senior Data Analyst.




    Because it is built on top of NumPy, another popular data science library, it is easy to integrate into existing workflows. It also offers a range of algorithms that can be used for data cleaning, preprocessing, and feature engineering. Another advantage is its ability to handle large datasets and complex data structures.

    SciPy's powerful linear algebra and optimization modules make it useful for machine learning applications. It can be used for clustering, classification, regression, and other common machine learning tasks. Its visualization tools, including Matplotlib and Seaborn, make it easy to create informative data visualizations. In terms of perspectives, SciPy is likely to continue to be a popular choice for data scientists in the future.

    SciPy ready to use classes and constatnts are broadly applicable across many domains such as algebraic equations, differential equations, statistics, algorithms optimization, integration, interpolation, eigenvalue problems, machine learning and more...



  1. Solving Linear Equations.


  2. 
    # 2x + 5y = 6
    # 5x + 7y = 9
    
    import numpy as np
    from scipy import linalg
    
    equation = np.array([[2, 5], [5, 7]])
    solution = np.array([[6], [9]])
    
    roots = linalg.solve(equation, solution)
    
    print("Еhe roots:")
    print(roots)
    
    print("\n Dot product should be zero if the solutions are correct:")
    print(equation.dot(roots) - solution)
    
  3. Solving Polynomial Equations.


  4. 
    # 3*(2**2) + 4*2 + 7 = 27
    
    from numpy import poly1d
    first_polynomial = poly1d([3, 4, 7])
    print("Solving the Polynomial: \n")
    print(first_polynomial(2))
    

  5. Linear Algebra - Basic Matrix Operations.


  6. 
    import numpy as np
    from scipy import linalg, sparse
    
    #Creating Matrices
    A = np.matrix(np.random.random((2,2)))
    B = np.asmatrix(b)
    C = np.mat(np.random.random((10,5)))
    D = np.mat([[3,4], [5,6]])
    
    #Inverse
    #A.I Inverse
    linalg.inv(A) #Inverse
    #A.T Tranpose matrix
    #A.H Conjugate transposition
    np.trace(A) #Trace
    
    #Norm
    linalg.norm(A) #Frobenius norm
    linalg.norm(A,1) #L1 norm (max column sum)
    linalg.norm(A,np.inf) #L inf norm (max row sum)
    
    #Rank
    np.linalg.matrix_rank(C) #Matrix rank
    
    #Determinant
    linalg.det(A) #Determinant
    
    #Solving linear problems
    linalg.solve(A,b) #Solver for dense matrices
    E = np.mat(a).T #Solver for dense matrices
    linalg.lstsq(D,E) #Least-squares solution to linear matrix equation
    
    #Generalized inverse
    linalg.pinv(C) #Compute the pseudo-inverse of a matrix (least-squares solver)
    linalg.pinv2(C) #Compute the pseudo-inverse of a matrix (SVD)
    
  7. Linear Algebra - Sparse Matrices.


  8. 
    import numpy as np
    from scipy import linalg, sparse
    
    #Creating Sparse Matrices
    
    F = np.eye(3, k=1) #Create a 2X2 identity matrix
    G = np.mat(np.identity(2)) #Create a 2x2 identity matrix
    C[C > 0.5] = 0
    H = sparse.csr_matrix(C) #Compressed Sparse Row matrix
    I = sparse.csc_matrix(D) #Compressed Sparse Column matrix
    J = sparse.dok_matrix(A) #Dictionary Of Keys matrix
    E.todense() #Sparse matrix to full matrix
    sparse.isspmatrix_csc(A) #Identify sparse matrix
    
    #Sparse Matrix Operations
    
    #Inverse
    sparse.linalg.inv(I) #Inverse
    #Norm
    sparse.linalg.norm(I) #Norm
    #Solving linear problems
    sparse.linalg.spsolve(H,I) #Solver for sparse matrices
    sparse.linalg.expm(I) #Sparse matrix exponential
    
  9. Linear Algebra - Matrix Functions.


  10. 
    #Addition
    np.add(A,D) #Addition
    
    #Subtraction
    #np.subtract(A,D) #Subtraction
    
    #Division
    #np.divide(A,D) #Division
    
    #Multiplication
    #np.multiply(D,A) #Multiplication
    np.dot(A,D) #Dot product
    np.vdot(A,D) #Vector dot product
    np.inner(A,D) #Inner product
    np.outer(A,D) #Outer product
    np.tensordot(A,D) #Tensor dot product
    np.kron(A,D) #Kronecker product
    
    #Exponential Functions
    linalg.expm(A) #Matrix exponential
    linalg.expm2(A) #Matrix exponential (Taylor Series)
    linalg.expm3(D) #Matrix exponential (eigenvalue decomposition)
    
    #Logarithm Function
    linalg.logm(A) #Matrix logarithm
    
    #Trigonometric Tunctions
    linalg.sinm(D) #Matrix sine
    linalg.cosm(D) #Matrix cosine
    linalg.tanm(A) #Matrix tangent
    
    #Hyperbolic Trigonometric Functions
    linalg.sinhm(D) #Hypberbolic matrix sine
    linalg.coshm(D) #Hyperbolic matrix cosine
    linalg.tanhm(A) #Hyperbolic matrix tangent
    
    #Matrix Sign Function
    np.sigm(A) #Matrix sign function
    
    #Matrix Square Root
    linalg.sqrtm(A) #Matrix square root
    
    #Arbitrary Functions
    linalg.funm(A, lambda x: x*x) #Evaluate matrix function
    
  11. Linear Algebra - Matrix Decompositions.


  12. 
    #Eigenvalues and Eigenvectors
    la, v = linalg.eig(A) #Solve ordinary or generalized eigenvalue problem for square matrix
    l1, l2 = la #Unpack eigenvalues
    v[:,0] #First eigenvector
    v[:,1] #Second eigenvector
    linalg.eigvals(A) #Unpack eigenvalues
    
    #Singular Value Decomposition
    U,s,Vh = linalg.svd(B) #Singular Value Decomposition (SVD)
    M,N = B.shape
    Sig = linalg.diagsvd(s,M,N) #Construct sigma matrix in SVD LU Decomposition
    P,L,U = linalg.lu(C) #LU Decomposition
    
    la, v = sparse.linalg.eigs(F,1) #Eigenvalues and eigenvectors
    sparse.linalg.svds(H, 2) #SVD
    
  13. Useful constants.


  14. 
    from scipy import constants
    
    print(constants.pi) #pi
    
    #Metric (SI) Prefixes
    
    print(constants.tera)     #1000000000000.0
    print(constants.giga)     #1000000000.0
    print(constants.mega)     #1000000.0
    print(constants.kilo)     #1000.0
    print(constants.hecto)    #100.0
    print(constants.deka)     #10.0
    print(constants.deci)     #0.1
    print(constants.centi)    #0.01
    print(constants.milli)    #0.001
    print(constants.micro)    #1e-06
    print(constants.nano)     #1e-09
    print(constants.pico)     #1e-12
    print(constants.femto)    #1e-15
    
    #Binary Prefixes:
    
    print(constants.kibi)    #1024
    print(constants.mebi)    #1048576
    print(constants.gibi)    #1073741824
    print(constants.tebi)    #1099511627776
    print(constants.pebi)    #1125899906842624
    
    #Mass:
    
    print(constants.gram)        #0.001
    print(constants.metric_ton)  #1000.0
    print(constants.grain)       #6.479891e-05
    print(constants.lb)          #0.45359236999999997
    print(constants.pound)       #0.45359236999999997
    print(constants.oz)          #0.028349523124999998
    print(constants.ounce)       #0.028349523124999998
    
    #Angle:
    
    print(constants.degree)     #0.017453292519943295
    print(constants.arcmin)     #0.0002908882086657216
    print(constants.arcminute)  #0.0002908882086657216
    print(constants.arcsec)     #4.84813681109536e-06
    print(constants.arcsecond)  #4.84813681109536e-06
    
    #Time:
    
    print(constants.minute)      #60.0
    print(constants.hour)        #3600.0
    print(constants.day)         #86400.0
    print(constants.week)        #604800.0
    print(constants.year)        #31536000.0
    
    #Length:
    
    print(constants.inch)              #0.0254
    print(constants.foot)              #0.30479999999999996
    print(constants.yard)              #0.9143999999999999
    print(constants.mile)              #1609.3439999999998
    print(constants.mil)               #2.5399999999999997e-05
    print(constants.pt)                #0.00035277777777777776
    print(constants.point)             #0.00035277777777777776
    
    #Pressure:
    
    print(constants.atm)         #101325.0
    print(constants.atmosphere)  #101325.0
    print(constants.bar)         #100000.0
    
    #Area:
    
    print(constants.hectare) #10000.0
    print(constants.acre)    #4046.8564223999992
    
    #Volume:
    
    print(constants.liter)            #0.001
    print(constants.litre)            #0.001
    print(constants.gallon)           #0.0037854117839999997
    print(constants.gallon_US)        #0.0037854117839999997
    print(constants.gallon_imp)       #0.00454609
    print(constants.fluid_ounce)      #2.9573529562499998e-05
    print(constants.fluid_ounce_US)   #2.9573529562499998e-05
    print(constants.fluid_ounce_imp)  #2.84130625e-05
    print(constants.barrel)           #0.15898729492799998
    
    #Speed:
    
    print(constants.kmh)            #0.2777777777777778
    print(constants.mph)            #0.44703999999999994
    print(constants.mach)           #340.5
    print(constants.speed_of_sound) #340.5
    print(constants.knot)           #0.5144444444444445
    
    #Temperature:
    
    print(constants.zero_Celsius)      #273.15
    print(constants.degree_Fahrenheit) #0.5555555555555556
    



See also related topics: